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Introduction

In recent years, computer-assisted diagnosis (CAD) using 
machine learning systems has received significant attention 
and made remarkable progress. Deep learning, a subset of 
machine learning, involves various machine learning models, 
usually based on convolutional neural networks (CNNs). 
The difference between classic machine learning and CNNs 

is that the former is based on manually selected features, 
such as color, texture, and shape, intended to imitate an 
endoscopist’s analysis, whereas the latter is an end-to-
end learning system with automatic feature learning (1).  
Because the computer automatically performs feature 
selection, understanding the outcome is challenging, and 
thus, CNN is often referred to as a “black box” (2). CNN 
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has achieved expert capabilities in multiple medical fields, 
including radiology, skin lesions, retinal screening, and 
pathology slides (3-5).

The application of the CAD system to diagnose 
early esophageal squamous cell carcinoma (ESCC) has 
also received attention in recent times. In endoscopic 
applications, the CAD system was first used in colonoscopies 
to help improve polyp detection and adenoma detection 
and to interpret the lesion patterns, differentiating 
between benign and precancerous polyps (6). However, the 
endoscopic diagnosis of esophageal cancer is not objective; 
it relies on the skills and experience of the endoscopist 
(7,8), and accurate diagnosis requires significant experience 
and time. Rodriguez de Santiago et al. reported that less 
experienced endoscopists (<5 years and <1,000 endoscopies) 
were strongly associated with missed esophageal cancer 
on multivariate analysis (8). The application of a CAD 
system has the potential to solve both the difficulty and 
complexity of endoscopic diagnosis. With such systems, all 
endoscopists, including non-experts, could easily achieve 
accurate diagnoses.

This article reviews the current status of artificial 
intelligence (AI)-driven CAD systems in the detection and 
staging of early stage esophageal cancer.

Prevalence of esophageal cancer

Esophageal cancer is one of the leading causes of cancer-
related death and is associated with high morbidity and 
mortality (9,10). There are two predominant histologic 
types of esophageal cancer: ESCC and esophageal 
adenocarcinoma (EAC) in Barrett’s esophagus (BE). 
Although EAC is predominant in Western countries, ESCC 
is still the most common subtype, accounting for 80% of all 
esophageal cancers (11).

Detection of squamous cell carcinoma

Although the overall prognosis of patients with advanced 
ESCC is poor, it can be treated in a less-invasive manner, 
for example, by endoscopic resection, if the lesion is 
detected at an early (mucosal or submucosal) stage  
(12-17). Therefore, detecting the lesions in their early stages 
is very important. However, it has been a great challenge to 
diagnose ESCC at such an early stage through conventional 
endoscopy, particularly using white light imaging (WLI) 
(18,19). Iodine staining is useful and widely used to detect 
ESCC in high risk patients; however, it is linked to chest 

discomfort. In contrast, NBI and blue laser imaging (BLI) 
are revolutionary image-enhanced endoscopy technologies 
that make superficial ESCC detection easy (20-26). NBI 
is superior to iodine staining owing to its simplicity in 
operation; it can be performed within minutes by pushing 
a single button, causing no discomfort to the patient. 
However, when used by less experienced endoscopists, its 
sensitivity is only 53% for detecting ESCC (27). Therefore, 
there is a need for novel, effective technologies to effectively 
detect superficial ESCC.

Horie et al. first reported an AI-driven CAD system for 
detecting esophageal cancers, including ESCC and EAC (28).  
Their system was trained using 8,428 endoscopic still 
images of esophageal cancer, including 365 ESCC cases 
and 32 EAC cases. It was then validated using a dataset 
consisting of 1,118 images from 97 cases (47 cases with 
esophageal cancer and 50 cases without it). The system 
accurately detected the cancer in 98% of the cases (46 of 
the 47), and analysed 1,118 images in 27 seconds. Notably, 
the CAD diagnostic system could detect all the lesions that 
were less than 10 mm in size. Moreover, it could specifically 
differentiate superficial and advanced cancer with 98% 
accuracy. The sensitivity of the system for each image 
was found to be 77%, with a specificity of 79%, positive 
predictive value (PPV) of 39%, and negative predictive 
value (NPV) of 95%. Although the PPV was not very high, 
the authors suggested that further training the system 
on normal structures and benign lesions would improve 
it. This was the first study to evaluate the possibility of 
detecting esophageal cancer in endoscopic images using a 
CAD system.

Ohmori et al. reported a CNN-based AI system to detect 
and differentiate ESCC using non-magnified endoscopy 
(non-ME) and ME images, respectively (29). They used 
9,591 non-ME and 7,844 ME images of superficial ESCCs 
and 1,692 non-ME and 3,435 ME images of noncancerous 
lesions or normal esophagi to train the system. The 
validation dataset contained 255 non-ME WLI, 268 non-
ME NBI/BLI, and 204 ME NBI/BLI from 135 patients. 
Fifteen experienced endoscopists diagnosed the same 
validation data. There was no significant difference in the 
diagnostic performance between the CAD system and the 
experienced endoscopists. The possibility of achieving 
detection and differentiation of ESCC in real-time using 
video images was suggested, because the CAD system 
performed its analysis at a rate of 36 images per second.

Cai et al. developed a deep neural network (DNN)-based 
CAD system trained using 2,428 (1,332 abnormal, 1,096 
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normal) images from 746 patients. A validation dataset 
consisting of 187 images from 52 patients was prepared to 
detect ESCC (30). The same validation data were diagnosed 
by 16 endoscopists (4 senior, 6 mid-level, and 6 junior). The 
DNN-based CAD system exhibited a diagnostic accuracy 
of 91.4%. Although the senior group exhibited an average 
diagnostic accuracy of 88.8%, the junior group exhibited 
a lower value of 77.2%. Interestingly, the sensitivity of 
endoscopists in detecting ESCC was improved in the image 
set that had a rectangular frame displayed by the CAD 
system to indicate ESCC. The average diagnostic ability of 
the endoscopists, after referring to the results of the CAD 
system, improved particularly in terms of sensitivity (74.2% 
vs. 89.2%), accuracy (81.7% vs. 91.1%), and NPV (79.3% 
vs. 90.4%). In terms of sensitivity and specificity, the CAD 
system was superior to both inexperienced and experienced 
endoscopists in detecting ESCC in endoscopic images.

Guo et al. trained a CAD system using 6,473 NBI still 
images (2,770 of precancerous lesions and early ESCC and 
3,703 of noncancerous lesions) (31). To validate the system, 
1,480 malignant and 5,191 noncancerous NBI still images 
as well as 20 ME and 27 non-ME NBI videos were used. 
The sensitivity and specificity of detecting ESCC in the 
still images were shown to be 98% and 95%, respectively, 
whereas those in video datasets were shown to be 100% in 
both non-ME and ME NBI. They concluded that the real-
time CAD system has the potential to assist endoscopists 
in diagnosing precancerous lesions and ESCC in the near 
future.

A l though  the  above  ment ioned  r epor t s  have 
demonstrated highly accurate CAD systems using still 
endoscopic images, only one report has been validated 
with videos, in which the endoscopy is performed slowly 
(according to the video, it takes approximately 99 s from 
the esophagogastric junction to the cervical esophagus). In 
addition, the reports exclude poor quality images resulting 
from mucus, blur, halation, defocus, and poor insufflation 
of the air from validation videos, despite low-quality images 
being included alongside high-quality ones in clinical 
practice. Therefore, it can be concluded that these CAD 
systems require further improvement to detect early ESCC 
in a clinical setting, particularly in screening endoscopies, in 
which the endoscope is quickly passed through esophagus. 
Moreover, advancement in CNN detection still remains at 
the research stage. To address these weaknesses, it would be 
preferable to train the CAD system using endoscopic videos 
that include plenty of bridging images to achieve a higher 
robustness. Further, the system should be validated using 

high-speed videos in which the endoscope is passed from the 
esophagogastric junction to the cervical esophagus within 
approximately 10 s, as is the actual speed used in clinical 
practice. It would be useful to be able to predict high-risk 
cases of ESCC using standard WLI or NBI findings, similar 
to the prediction of cancer risks through iodine staining 
of Lugol-voiding lesions (LVL). It would also be useful if 
such a prediction could be made from a combination of 
endoscopic findings and clinical information, such as the 
amount of cigarette and alcohol consumption and blood test 
results.

Staging of ESCC

The risk of lymph node metastases is almost 0% for 
intraepithelial (EP) and lamina propria (LPM) ESCC, 
whereas it increases to 8–15%, 11–53%, and 30–54% 
for muscularis mucosa (MM), submucosal microinvasive 
(SM1), and submucosal deep invasive (SM2) or deeper 
cases, respectively (2-5). According to the Japan Esophageal 
Society (JES) guidelines, endoscopic resection (ER) 
is recommended for treating EP or LPM as definitive 
indication and MM or SM1 as relative indication, whereas 
surgical operation or chemoradiotherapy is recommended 
for SM2 cases (6). Thus, it is very important to diagnose the 
invasion depth of ESCC accurately to avoid over-treatment 
and improve patients’ quality of life. There are various 
diagnostic modalities to measure the invasion depth, such as 
regular WLI, endoscopic ultrasound (EUS), and ME with 
NBI (ME-NBI). ME-NBI enables improved visualization of 
subtle microvascular patterns in the esophageal mucosa of 
patients with ESCC (32). The JES classification (33,34), the 
Intrapapillary capillary loops (IPCL) classification of ESCC, 
is widely accepted. Importantly, each IPCL subgroup 
corresponds with high accuracy to histological findings and 
the invasion depth of esophageal squamous cell neoplasia 
(ESCN). However, it is challenging to diagnose invasion 
depth using WLI, ME-NBI, and EUS, especially for non-
expert endoscopists (35,36). Therefore, a more advanced 
measurement approach is required to help non-experts 
achieve diagnosis quality equivalent to that of experts 
without using special techniques.

Tokai et al. reported a CNN-based CAD system to 
detect and subsequently diagnose the invasion depth of 
ESCC distinguishing EP-SM1 and depths below SM2 in 
superficial ESCC using non-magnifying WLI images (37) 
(Figure 1). They retrospectively collected 1,751 training 
images of early ESCC, and 291 images were prepared 
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as a validation set to evaluate the diagnostic accuracy. 
These images were also reviewed by 13 board-certified 
endoscopists. The CAD system detected 95.5% (279/291) 
of the ESCC in the validation set. The overall accuracy of 
the obtained invasion depths of ESCC was 80.9% (225/279), 
whereas the corresponding sensitivity and specificity in 
diagnosing pEP-SM1 were 84.1% (159/189) and 73.3% 
(66/90), respectively. In this study, because they considered 
it crucial yet challenging to differentiate between MM-
SM1 and SM2 cases to determine the treatment method, 
they prepared a higher number of MM-SM1 cases (41.9%). 
The diagnostic accuracy of this system exceeded that of 
12 of the 13 expert endoscopists, and its score, measured 
by area under the curve, was greater than those of all the 
endoscopists.

Nakagawa et al. also reported a positive outcome of a 
CAD system diagnosing the invasion depth of ESCC using 
both non-magnified and magnified images (38). They used 
8,660 non-ME and 5,678 ME superficial ESCC images as 
a training dataset, and 405 non-ME images and 509 ME 
images as a validation set. The sensitivity, specificity, PPV, 
NPV, and accuracy for differentiating pathologic mucosal 
and SM1 cancers from SM2 or SM3 cancers were 90.1%, 
95.8%, 99.2%, 63.9%, and 91.0%, respectively. The 
same validation data were diagnosed by 16 experienced 
endoscopists with overall sensitivity, specificity, PPV, NPV, 

and accuracy of 89.8%, 88.3%, 97.9%, 65.5%, and 89.6%, 
respectively.

Everson et  al .  reported the AI classif ication of 
intrapapillary capillary loop (IPCL) patterns for ESCC (39). 
A total of 7,046 sequential high-definition ME-NBI images 
from 17 patients (10 ESCN, 7 normal) were used to train 
a CAD system. This system could differentiate between 
abnormal and normal IPCL patterns in ME-NBI images 
with 93.7% accuracy.

Zhao et al. (40) produced a CAD system based on ME-
NBI to investigate the classification of IPCLs automatically, 
and assist to diagnose early ESCC. The mean diagnostic 
accuracy of the model was 89.2%, which was significantly 
higher than that of the mid-level and junior doctor groups. 
This finding proved the feasibility of their model.

According to the above mentioned reports on invasion 
depth diagnosis, all the proposed systems showed good 
outcomes. However, certain concerns can be identified. 
First, the issue of selection bias in the validation set prevails. 
Nakagawa et al. (38) used several EP/LPM cases (75.5%), 
and fewer MM (6.5%) and SM1 cases (2.6%) in their 
validation set, and their system subsequently showed a high 
sensitivity of 90.1% in differentiating pathologic EP/SM1 
cancers from SM2 cancers. On the other hand, Tokai et al. (37)  
used fewer EP/LPM cases (36%), and a higher number 
of MM/SM1 cases (40%) in their validation set, and their 

Figure 1 Examples of the study of the detection of early esophageal squamous cell carcinoma and subsequent diagnosis of its invasion  
depth (38) (A). On the posterior wall, there is a reddish depressed lesion with slight marginal elevation and thickness. The endoscopist 
previously marked the lesion with a green square and labeled its invasion depth. The artificial intelligence (AI) diagnostic system marked the 
lesion with the yellow square and subsequently diagnosed its invasion depth. Its pathological invasion depth is T1b submucosal microinvasive 
(SM1), and the diagnosis of AI was T1b-SM1. In this case, the AI diagnosing system could accurately detect the lesion and diagnose the 
invasion depth. (B) This is a T1b submucosal deep invasive (SM2) case. The AI diagnosing system detected the lesion and diagnosed the 
invasion depth in the same manner. (C) This is T1a lamina propria (LPM) case. Although the AI diagnosing system could detected the 
lesion, it overestimated its invasion depth as T1a-SM2, likely because it was located on an extramural compression.
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system showed a sensitivity of 84.1% in differentiating 
pathologic EP/SM1 cancers from SM2 cancers. Their study 
further evaluated the accuracy of CAD system for each 
pathological invasion depth; the accuracies of the EP-SM1 
diagnoses were higher for the pEP-LPM and pMM groups 
(91.2% and 91.4%, respectively) than for the pSM1 group 
(67.8%). From these results, it can be said that although 
positive outcomes can be achieved easily using a large 
number of EP/LPM cases to distinguish them from EP-
SM1 and SM2 cases, it is difficult to differentiate between 
the SM1 and SM2 cases. This weakness should be addressed 
before such systems are applied to clinical practice. Second, 
CAD systems trained using video data are necessary. This 
is because it is very important to observe the changes in 
tumor extension from the amount of insufflated air to 
understand the rigidity, flexibility, and thickness of the 
lesion while diagnosing the invasion depth; such findings 
can be observed in greater detail in videos as compared 
to still images. Third, it would be preferable if a CAD 
system could diagnose not only invasion depth but also the 
possibility of lymph node metastasis or lymphovascular 
invasion, location of deep invasion, location of ductal 
involvement, and existence of droplet infiltration. This 
would help in determining the management of the lesion as 
well as in performing endoscopic resection.

EAC in BE

It is well known that BE is a risk factor for the development 
of EAC. The risk of EAC rises when BE is associated with 
dysplasia (41,42), and its prognosis depends strongly on the 
stage at the time of diagnosis (43). Therefore, it is crucial 
to detect EAC in its early stage to improve the prognosis; 
however, the detection and characterization of early EAC in 
BE is challenging, especially for inexperienced endoscopists. 
Early EAC is difficult to detect from the surrounding non-
dysplastic Barrett’s mucosa due to the flatness of the lesion, 
even with high-definition endoscopes (44).

It has been reported that high-definition white light 
endoscopy is the optimum solution for initial recognition 
of BE neoplasia by surveillance (45,46). The image quality 
of high-definition endoscopes is now sufficiently high for 
expert endoscopists to detect even very subtle mucosal 
surface abnormalities derived from high-grade dysplasia 
and early EAC (47). Despite these major improvements, 
detecting high-grade dysplasia and early EAC remains 
difficult for non-expert or general endoscopists who 
perform surveillance (47). This is because these endoscopists 

rarely encounter neoplastic lesions in BE (48). Therefore, 
another diagnostic modality is needed to assist non-expert 
or general endoscopists improve their accuracy of detecting 
early neoplasia in BE.

Detection of EAC

Ebigbo  et al. used two databases, the Augsburg database 
and the Medical Image Computing and Computer Assisted-
Intervention (MICCAI) database, to train and validate a 
CAD system driven by a CNN with a residual network 
(ResNet) architecture (49). The Augsburg dataset included 
148 high-definition WLI and NBI images and 41 areas 
of non-neoplastic mucosa in BE, whereas the MICCAI 
dataset contained 100 high-definition WLI images of early 
EAC cases and 22 areas of non-neoplastic mucosa in BE. 
Using the Augsburg data, the sensitivity and specificity for 
diagnosing EAC are 97% and 88% for WLI, and 94% and 
80% for NBI, respectively, which was superior to those of 
11 of the 13 endoscopists. The sensitivity and specificity for 
the MICCAI images were 92% and 100%, respectively (49). 
Based on this work, Ebigbo et al. developed a real-time AI 
system (50). They trained the CAD system using a total of 
129 endoscopic images. To validate in real time, additional 
images (36 early EAC and 26 normal BE) were assessed 
by the CAD system in concurrence with the endoscopic 
examination by an expert BE endoscopist. The CAD system 
showed sensitivity, specificity, and overall accuracy of 
83.7%, 100.0%, and 89.9%, respectively.

Hashimoto et al. (51) reported a system that achieved not 
only accurate detection of early esophageal neoplasia in BE 
images, but also localization accuracy. They collected 916 
images of high-grade dysplasia or T1 cancer in BE, and the 
lesion area was masked by image annotation software. They 
additionally collected 919 control images of BE without 
lesion. A CNN algorithm was pretrained on ImageNet 
and then fine-tuned with the goal of providing an accurate 
binary classification of “dysplastic” or “nondysplastic”. 
Then, an object detection algorithm that drew localization 
boxes around regions classified as dysplasia was developed. 
Concerning localization accuracy, they used mean average 
precision (mAP), usually used for AI. The CAD system 
analyzed 458 images (233 nondysplasia and 225) as a 
validation dataset and accurately detected early neoplasia 
with a sensitivity, specificity, and overall accuracy of 96.4%, 
94.2%, and 95.4%, respectively. The localization algorithm 
accurately detected most lesions, with a mAP of 0.7533. 
In addition, the speed of predictions was greater than  
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70 fps. Hence, this work showed the possibility of 
developing a CAD system for detection of dysplasia for 
real-time endoscopy.

de Groof et al. (52) worked on developing a CAD system 
for detection of Barrett’s neoplasia. In this study, detection 
was considered to be accurate when the algorithm correctly 
identified an image as neoplastic or non-neoplastic. 
Furthermore, overlapped neoplastic areas delineated by 
experts and the CAD system were evaluated. Prospective 
collection of WLI for suspected areas of Barrett’s from 
40 Barrett’s and 20 non-dysplastic patients was delineated 
by six expert endoscopists. The system achieved accuracy, 
sensitivity, and specificity of 91.7%, 95%, and 85%, 
respectively per image; the lesion was successfully located. 
The algorithm rapidly identified BE, with a mean time of 
1.051 seconds per image using WLI. They also developed 
a hybrid ResNet-UNet model CAD system using five 
well-defined, independent endoscopy datasets (53) to 
train and validate it. Pre-training was performed using 
494,364 labelled endoscopic images collected from all 
intestinal segments. Then, a total of 1,704 images of early 
BE neoplasia and nondysplastic BE, derived from four 
different centers and delineated by >10 experts, were 
acquired for training and validation. System performance 
was assessed using the fourth and fifth datasets. The 
fifth dataset was also scored by 53 general endoscopists 
from four different countries. The system differentiated 
images containing neoplasms or nondysplastic BE with 
accuracy, sensitivity, and specificity of 89%, 90%, and 88%, 
respectively (fourth dataset, 80 patients and images) and 
88%, 93%, and 83%, respectively (fifth dataset, 80 patients 
and images). Meanwhile, the general endoscopists achieved 
accuracy, sensitivity, and specificity of 73%, 72%, and 74%, 
respectively. The CAD system showed higher accuracy 
than 53 inexpert endoscopists, with comparable delineation 
performance. The CAD system identified the optimal site 
for the biopsy of detected neoplasia in 97% and 92% of 
cases (the fourth and fifth datasets, respectively).

It is notable that the CAD system can identify the area 
suitable for biopsy (52), because it is difficult to accurately 
determine the biopsy location of early EAC in BE, for 
both non-experienced and experienced endoscopists. Such 
solutions would overcome the issue of random biopsy. 
Although the reports showed good outcomes in detecting 
EAC, we believe that video analysis is required for both 
training and validation to achieve improved clinical 
usability. Anatomically, it is highly challenging to observe 
the esophageal mucosa near esophagogastric junction, 

particularly for non-experts. Therefore, a CAD system 
using real-time video that can detect EAC under difficult 
conditions, such as at the esophagogastric junction, is 
needed.

Conclusions

AI-based research focused on esophageal cancers is 
increasing, particularly in the detection and staging of 
ESCC and EAC. We hope further development of CAD 
systems will be applied in clinical practice, such as real-
time video-based systems and ESCC risk prediction 
systems based on the images of non-cancerous esophagus. 
With these achievements, AI systems can effectively assist 
endoscopists in making accurate diagnoses and could 
increase the rate of detection of esophageal cancers at an 
early stage, improving survival rates. Further, improved 
diagnoses of invasion depth would improve patients’ quality 
of life by avoiding over-treatment.
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